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NEURAL NETWORKS FOR LOCALIZED APPROXIMATION 

C. K. CHUI, XIN LI, AND H. N. MHASKAR 

ABSTRACT. We prove that feedforward artificial neural networks with a single 
hidden layer and an ideal sigmoidal response function cannot provide localized 
approximation in a Euclidean space of dimension higher than one. We also 
show that networks with two hidden layers can be designed to provide localized 
approximation. Since wavelet bases are most effective for local approximation, 
we give a discussion of the implementation of spline wavelets using multilayered 
networks where the response function is a sigmoidal function of order at least 
two. 

1. INTRODUCTION 

There has been much study in recent years on the question of using neural 
networks for approximating real-valued functions of several real variables. In 
particular, Cybenko [8] and Homik, Stinchcombe, and White -[1 ] have proved 
that it is possible to use a neural network with one hidden layer and a sigmoidal 
activation function to approximate continuous functions on any compact sub- 
set of a Euclidean space of an arbitrary dimension. In addition, Chui and Li 
[5], Mhaskar and Micchelli [16], Ito [13, 14], and Barron [1] also obtained such 
density theorems in various more or less general contexts, using different ap- 
proaches, as well as studied the complexity problem in some detail. In [15], it 
is shown that a neural network with multiple hidden layers and a generalized 
sigmoidal activation function can be constructed to achieve the optimal rate 
of approximation for smooth nonanalytic functions and for analytic functions, 
a near-geometric rate independent of the dimensions of the input space. The 
question as to whether the same can be achieved with a single hidden layer is 
still open. 

The objective of this paper is to investigate the possibility of constructing 
networks suitable for localized approximation, i.e., a network with the property 
that if the target function is modified only on a small subset of the Euclidean 
space, then only a few neurons, rather than the entire network, need to be re- 
trained. The precise definitions will be given in the next section. We prove that 
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if the dimension of the input space is greater than one, then such a network with 
one hidden layer and a Heaviside activation function cannot be constructed. In 
contrast, we also show that a network with two or more hidden layers can always 
be constructed to accomplish the task. To realize an effective local approximat- 
ing network, we construct the Chui-Wang spline wavelets [7] using multilayered 
networks with a generalized sigmoidal activation function. 

As in [15], our proofs will be constructive and the "training algorithm" will 
be noniterative. Hence, the usual questions about stability, settling into local 
minima, etc., which usually need to be discussed in connection with the more 
popular backpropagation networks, simply do not arise. 

2. LOCALIZED APPROXIMATION 

In the sequel, let s > 2 be any integer and Q := [-1, 1 ] be the standard 
cube in Rs. Intuitively, a neural network can be said to provide localized 
approximation on Q, if Q can be divided into a number of subregions so that 
only a small number of neurons are responsible for providing approximation 
on each subregion. Thus, if the function to be synthesized is modified only 
on a small part of Q, one needs only to retrain the small number of neurons 
responsible for this part, rather than retraining the entire network. 

To make this idea more precise, we need some terminology. For x, y E Rs, 
x * y denotes the inner product between x and y, and Ix - yi the Euclidean 
distance between x and y. In using measure-theoretic terms such as "almost 
everywhere", "measurable", and so on, we refer to the s-dimensional Lebesgue 
measure, which will be denoted by A. Hence, if A is a measurable subset of 
Rs, and 1 < p < o00, the LP norm of a measurable function g: A -- R is given 
by 

(2.1) 11g91p,A:= (f ig(t)lPd2(t))lIP If 1 ?p <00 
ess supA ig(t)i if p = 00. 

The class LP(A) then consists of measurable functions g on A for which 
ligilp,A < oc, where two functions are identified if they are equal almost ev- 
erywhere. Also, the class C(A) consists of continuous functions on A which 
vanish at infinity. The symbol XA denotes the characteristic function of A, 
i.e., the function that takes on the value 1 on A and zero outside A. 

Let a: R -- R be any function. The output of a feedforward neural network 
with n neurons, arranged in a single hidden layer and with response function 
a, is of the form n=l CkC(Wk X + bk) . The class of all such functions will be 
denoted by rln, 1 , s, , . Next, we formally define inductively the class 7nI,I ,ls, , 

of all possible outputs of a fully connected feedforward network with n neu- 
rons, each with response function a, arranged in at most / hidden layers and 
receiving an input from Rs. The class Iln, I,s , is already defined. Suppose 
that FIn,mn, s, , is defined for all integers n > 1 and m < 1. A typical net- 
work with / layers is constructed as follows. Let there be p neurons in the 
lth layer. Each of these receives a different number of inputs. Suppose that 
for each k, 1 < k < p, the output of nk subnetworks, {Pj,k}jni, is input 
to the kth neuron, A typical member of Fn i,s,a is therefore of the form 
Ek=I Cka(Z 1= Wj, kPj k(X) + bk), where, for j = 1, ..., nk, k = 1, ... p, 
the quantities Ck, Wj, k, bk E R, Pj,k E nlJk,k 1-1 S, a for some integers nj, k 
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Here, we require that the total number of neurons in the circuit is at most n. 
We do not rule out the possibility that the output of some subnetwork may be 
input to more than one neuron. 

In defining the notion of localized approximation, we are motivated by the 
approximation by piecewise constants. The simplest way to approximate an 
f: Q -* R by piecewise constants is to divide Q uniformly into smaller cubes, 
and define the constant value of the approximation on each cube C to be the 
value of f at the center of C. Hence, such an approximation can be expressed 
in the form E acXc. This simple approximation scheme is obviously localized 
in the sense that if the target function is modified on a part of Q, only the 
terms in the sum corresponding to the cubes overlapping with this part need 
to be modified. It is now seen that the problem of localized approximation 
can be reduced to the problem of approximating the characteristic function 
of each cube by neural networks of a fixed size, independent of the degree of 
approximation desired. If networks with a fixed number m of neurons can be 
constructed to approximate the characteristic function of each cube, then this 
simple-minded but clearly localized approximation by piecewise constants will 
lead to a localized approximation by neural networks. We now observe that the 
class Fn1ls a is closed under the transformation x -k wx for any w > 0. 
Therefore, approximating the characteristic function of any cube is equivalent 
to approximating the characteristic function of Q. Hence, we may formulate 
the notion of localized approximation by a network with 1 hidden layers as 
follows. 

Definition 2.1. Let 1 > 1 be an integer. A neural network with / hidden layers 
and response function a is said to provide localized approximation if there 
exists an integer m > 1 and a sequence {I Pn} C FI,,s, q such that 

(2.2) lim IIXQ-PnII1,K = O 
n---oo 

for every compact set K c Rs. 

Our first goal is to show that a network with one hidden layer does not nec- 
essarily yield localized approximation. 

Theorem 2.2. Let 

ifx?0, (2.3) ()= fx0 

Then a neural network with one hidden layer and response function a does not 
provide localized approximation. 

The proof of Theorem 2.2 will consist of an elaborate compactness argument 
and will actually show that it is not possible to approximate any nontrivial 
function locally using a network with a single hidden layer and the response 
function (2.3). Therefore, the next question which presents itself is whether it 
is possible to achieve local approximation using two hidden layers. Using the 
ideas in [15], we prove that such an approximation is indeed possible, and we 
also give a rate of approximation. 

In order to measure the rate of approximation, we introduce the notion of 
modulus of continuity. Let I :=, 71=[aj, bj] and f e LP(I) for some p 
with 1 < p < oc, where if p = oo then it is understood that f E C(I). For 
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h:= (h('), ... , h(s)), where each h(j) > O, we let Ih := rs>=1[aj+h(j), bj-h(j)] 
and define, for 3 > 0, 

(2.4) co(LP(I), I; f, 3) max IIf( + h) - fQ)Ilp,Ih 
0<h(j)<?, 1<j<s 

The following theorem gives the localized analogue of Theorem 3.4 in [15]. 

Theorem 2.3. Suppose that a: R R is a measurable function such that 

(2.5a) lim a(x) 0, lim a(x) = 1 
X -4-OO X-4+00 

and 

(2.5b) a(x)l < M, x E R, 
where M < 2s/(2s - 1) is a constant. Then a neural network with two hidden 
layers and response function a provides localized approximation. Furthermore, 
let 1 < p < oc and f E LP(Q). For each integer n > 1 and each multi-integer 

mE {, 1, ..., n - 1 }s we define the cubes Rm, n Sm, n by 

s 

Rm,n fJ[-1 + m(j)/n, -1 + (m(i) + 1)/n], 

(2.6) j=1 
S 

Sm,n fJ[-I + (m(i) - 1)/n, -1 + (m(i) + 2)/n] n Q 
j=1 

and set N := Nn (2s + 1)ns . Then there exists a function Gn(f ) E rHN,2,s,,o 

such that 

(2.7) lf- Gn(f )lip, R, < 2wo (LP(Sm,n), Sm,n;f 2) 

We will actually construct the operators Gn explicitly in the course of the 
proof. Moreover, the approximation on Rm, n will be achieved by using at most 
2s + 1 neurons. 

3. PROOFS OF THE THEOREMS IN ?2 

Until the end of the proof of Theorem 2.2, we will use the notation a to 
denote only the ideal response function defined in (2.3) and rim to denote 
flm, I ,s, a. It is then obvious that for any w E Rs and b E R we have 

(3.1) a(w.x+b)+a((-w)-x-b)-a(O.x+l)=0 a.e.inRW. 

Therefore, we first seek a canonical representation for elements on VIm. We 
say that an expression of the form jm LI ckC(wk - x + bk) is in reduced form if 

(i) the hyperspaces Wk * x + bk = 0 are all distinct, 
(ii) I Wk 12+ b2=1, k=l,...,m,and 

(iii) the first nonzero component of the (s + 1)-dimensional vector (Wk, bk) 
is positive. 

Proposition 3.1. Each P e VIm admits almost everywhere a unique expression 

in reduced form. 

Proof. Let 
m 

P(X) = Z Ck(Wk x + bk) 

k=1 
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Since a(cx) = a(x) for any c > 0 and a(0) = a(1), we may assume that at 
most one of the wk'S is zero and that the corresponding bk is equal to 1. With 
this convention, we may also assume that Iwk 2 + b2 = 1 for k = 1, ..., m. 
If any two of the hyperspaces wk * x + bk = 0 coincide, we may rearrange the 
indices and assume that wI = -w2 and bI = -b2. If w1 = 0, then w2 = 0, 
and our convention implies that b, = b2 = 1. Therefore, w, :$ 0, and we let 
the first nonzero component of w1 be positive. Then, using (3.1), we get, for 
almost all x E Rs, 

c1a(w, * x + bl) + C2a(W2 x X + b2) 

(3.2) fCl if wix+bi>O, 

C2 if wix+b? <O 
=c2a(0 * X + 1) + (Cl- C2)a(WI * x + bi). 

Thus, any P E Vim can be expressed in reduced form. 
To prove the uniqueness of such an expression, it is sufficient to show that if 

2m 

(3.3) Q(x) Z: CEkO(Wk * x + bk) = c a.e. in RS 
k=1 

for some constant c, where none of the vectors wk is zero and the expression 
on the left-hand side of (3.3) is in reduced form, then cl = * = C2m = C = 0. 
If this were not true, then we may assume that none of the constants Ck is zero. 
We shall show that one of them has to be zero, and thus arrive at a contradiction. 

It is easy to see that Q is almost everywhere equal to a piecewise constant 
function. To describe this function more precisely, we define the vector function 
S = (S(I), ... , S(2m)) by the formula 

(3.4) S(i)(x) = a(wj * x + bj) x EWRs j = 1, ... ., 2m . 

For x, y E Rs, we say that x y if S(x) = S(y). The equivalence relation 
partitions Rs into finitely many polytopic regions P1, ... , PM, each having 

positive measure and they may intersect only at their boundaries. Each region 
Pk can be identified with the Boolean vector Sk = (S) ...S, s2m)) := S(xk), 
where the choice of xk E Pk is arbitrary. The representation of the function Q 
as a piecewise constant is then the following: 

(3.5) Q(x) = E Cj a.e. in Pk, k= 1, ...,~ M. 
S(J ) = I 

Since the hyperspaces wk x+ bk = 0 are all nondegenerate and distinct, we see, 
in particular, that the hyperspace W2m x + b2m = 0 is a part of the boundary of 
two regions, say Pk and PI such that SkJ) - S(') for each j = 1, ..., 2m - 1 k I 

but Skm) =0 and S(2m)=1. Let Y := {j: 1 < j < 2m- 1, Sk =1}. From 
(3.5), we also see that 

( c; a.e.inPk, 

(3.6) Q(x) = EJ 

jEJCi+C2m a.e.inPi. 
jEJ' 
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In view of (3.3), we have C2m = 0. This contradicts our assumption that none of 
the coefficients Ck is zero, thereby completing the proof of the proposition. o 

When we consider sequences in lIm, it may happen that each term of the 
sequence is expressed in reduced form, but the obvious limiting expression is 
no longer in reduced form. This leads to the following definition. Let R, (x) = 

ET= Ick,nC(Wk,n * x + bk,n) E m for n = 1, 2, . We say that {Rn} is in 
asymptotically reducedform if 

(i) each Rn is in reduced form, 
(ii) lim, Wk, n = Wk, limn bk, n = bk for k = 1, ... , m, and 

(iii) the hyperspaces wk * x + bk = 0 are all distinct. 

It is not clear that every sequence in IIm , where the parameters form conver- 
gent sequences, can be rewritten in asymptotically reduced form. Nevertheless, 
the following result shows that this almost holds. 

Proposition 3.2. Let Pn(x) = Zk= 1 la(Wk,fn x+bk, n) E VIm, limn -oo Wk,n = 

Wk and limn ., bk ,n = bk for k = 1, ... , m. Then Pn can be expressed almost 
everywhere as Pn = Rn + Qn, where {Rn} C I1Im is in asymptotically reduced 
form, {Qnl c fl2m, and 

(3.7) lim A({x E K: Qn(x) 54 O}) = 0 

for any compact set K. 

Proof. By a suitable rearrangement of terms, we may assume that among the 
hyperspaces Hk: wk * x + bk = 0, 1 < k < m, the hyperspaces H1, . . ., H, are 
distinct. For the sake of concreteness, we assume that w1 = 0 and Wk :$ 0 for 

k = 2, ... , 1. The proof is only slightly different, and even simpler, if there is 

no degenerate hyperspace. Let 

Jj:={j:1+1 < j<m, wj=O} 

and 

J'k := {j: I+ 1 < ? m, Wi =-Wk, bj =-bk}, k=2, ...,. 

We may then write 

(3.8) 

Pn(x)= (Ci,n + Ci,n) 

+ Z (ck,na(Wk,n.x+bk,n)+ E ci,n a(-Wk,nfX-bk,n) 
k=2 EiEJk 

+ Ci c ,(a(w1,n * X + bx,?n) - a(-Wk,n * X-bk,n)) . 

k=2 EJk 
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We define 

R,(x):= cl,, + Cj,n, + I ECj,n O -(O.X+ 1) 

(3.9) jE-Yj 
k=2 

jE&, / 

+E (c n-ECj,n) U(Wk,n-x+bk, n) 
k=2 \ E )Jbkb 

and 

(3.10) Qnf(x):=ZZ Cj,fn(a(Wj,n lx+bj,n)-CT(-Wk,n -x-bk,fn)). 
k=2 jEJA 

Then by (3.1) we see that Pn = Rn + Qn almost everywhere. From the con- 
struction, it is clear that {Rn} is in asymptotically reduced form. Let 

Ej,k := {X E Rs: r(wj,n x+bj,n) - (-Wk,n *x-bk,n) 0}. 

If 2 < k < 1 and j E k, then limn +wj,n = -wk = -mlMn poowk,n and 
liMn--+ b, n= -bk = - limn,oo bk, n . Therefore, for any compact set K, it is 
clear that limn1fooA(Ej,k n K) = 0 for k = 2, ..., / and i E Ak . Hence, it 
follows that (3.7) holds. 5 

The next proposition describes a compactness property for the class I"m. 

Proposition 3.3. Let Pn E Elm be such that for every compact set K c Rs, 

(3.11) limsup llPfhll ,K <1. 
n- oo 

Then there exists a P E rlm and a subsequence A of integers such that 

(3.12) lim Pn (x) = P(x) a.e. in W. 
n-*oo, nEA 

Proof. We write each Pn in reduced form, say 
m 

(3.13) Pn(x) = E Ck,na(Wk,n *x + bk,n) - 
k=I 

Then there exists a subsequence A1 of integers, wk E Rs, and bk E R such 
that 

(3.14) lim Wkln =Wk lim bk,n =bk k = l M.,m 
n-c)o,nEAI n-*oo, nEAi, 

For each n E A1 , we write Pn = Rn + Q,, where 
m 

(3.15) Rn Z ak,n (vk,n - x + dk,n), 
k=1 

{Rn} is in asymptotically reduced form, and Qn satisfies (3.7). Then we have, 
for a subsequence A2 of Al, 
(3.16) lim Qn(x) = 0 a.e. in RS. 

nf-oo, nfEA2 

We recall that there exist Vk e Rs and dk e R such that 

(3.17) lim Vkln 
= Vk, lim dk,n = dk, k = M,n.E n-oo, nEA2 n--00, nEA2 
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We show that for some subsequence A of A2, the sequences {ak,n}nEA con- 
verge. In view of (3.16), this will complete the proof. With 

An,:= max Iak ni' 
1<k<m 

it suffices to show that 

(3.18) liminf A, <oc. 
n- ooo, nEA2 

If possible, suppose that (3.18) is false. Let e > 0 and K be a compact subset 
of Rs, both arbitrarily given. We may assume that A(K) > e. In view of 
(3.7), there exists a set E C K with A(E) < e/2 such that Pn(x) = Rn(x) for 
x E K\E and all sufficiently large n E A2 . Therefore, (3.1 1) implies that 

(3.19) limsup IIRnIll K\E < 1- 
n-+ooo, nEA2 

Since limn oO, nEA2 An = oc, we deduce that the sequence {Rn = A,-'Rn}neA2 
converges to zero in measure on every compact subset of Rs. In particular, 
there is a subsequence A3 of A2 such that 

(3.20) lim Rn(x) = O a.e. in Rs. 
n -40o, nEA3 

In view of the definition of An, there is a subsequence A4 of A3 and num- 
bers ak E R such that at least one of the ak's has absolute value 1 and 
limn-oo, nEA4(ak,nl/An) = ak for 1 < k < m. We set 

m 
R(x) E a (Vk * X + dk) . 

k=1 

Since {RnInEA4 is in asymptotically reduced form, R is in reduced form. More- 
over, since at least one of the ak's is nonzero, R is not identically equal to zero. 
Since limno nEA4Rn(x) = R(x) for almost all x E Rs, this contradicts with 
(3.20). This proves (3.18), and the proof is complete. a 

Theorem 2.2 is quite simple to prove by using Proposition 3.3. We recall that 
a function 0: Rs -- R is called a test function if q is infinitely differentiable 
on Rs and every derivative qi of q (of arbitrary order) satisfies the condition 
supxERs kI,(x)(1 + IxI)N < 00 for any integer N > 0. The class 9 of all 
test functions forms a locally convex space with a suitable topology [18]. A 
continuous linear functional on 2 is called a (tempered) distribution. We refer 
the reader to [18] for a detailed exposition of the properties of test functions 
and distributions. Here, we only recall that the Fourier transform of a test 
function q is defined by 

q(x) = (27r)s-2 exp(-ix t)q0(t) d2(t), x E Rs, 

and that of a distribution u by 

i(q) = u(q), 0 E Y. 

Moreover, if u and v are distributions such that ui = v , then u = v . 

Proof of Theorem 2.2. If possible, let m > 1 be a fixed integer and {Pn} C 

rlm be a sequence which satisfies (2.2) for every compact set K c Rs. Then 
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Proposition 3.3 implies that there exists a P E Vim and a subsequence A of 
integers such that P(x) = lim1,0o nEAP, (x) almost everywhere. It follows that 
XQ(x) = P(x) almost everywhere. Given any finite set of hyperspaces wk * x + 
bk = 0, it is easy to construct a nonnegative test function that vanishes on all of 
them. Therefore, a comparison of the Fourier transforms of the distributions 
XQ and P shows that XQ(x) = P(x) cannot hold almost everywhere. (A more 
elementary proof of the fact that XQ(x) :$ P(x) for any P E rlm is given by 
Blum and Li in [2].) a 

Our proof of Theorem 2.2 depends very heavily on the properties of the 
ideal (Heaviside) sigmoidal function. We believe, however, that the same result 
still holds for any other sigmoidal function which is of bounded variation. The 
research on this problem is postponed to a later date. 

Proof of Theorem 2.3. Let e > 0 and L > 2. We construct a network N6,p,L 
with 2s + 1 neurons arranged in two hidden layers such that 

(3.21) JJXQ - Ne, p,L ip,QL < X, 
where QL := [-L, L]s. Then the sequence {N1l,, ,,} C rI2s+i,2,s,, will 
satisfy (2.2) for every compact set K c Rs. We set 

_2s -(2s - 1)M C *-s + 1 (m 
' 

(3.22) 2(2s+ 1) C ( 2 

a f 

s22s+2 (M + 1)P 

and find positive constants A and B such that 

lu(x) -11 < n if x > A, 

(3.23) Ia(x) - 11 < 
(eP/2(2L)s)lIP 

if x > B, 

Ia(x)l < (8P/2(2L)s)lIP if x < -B. 

In (3.23), the constant A is fixed depending only on a and s, and the constant 
B depends upon L and e as well. Here, we assume that e is so small that 
a < 1. We define 

e { 2s - (2s- 1)M 
[= 

(1 )) 

+ , ( ( 1- x(l))) - C] 
1=1 

If x E [-1 +6, 1 -]s , then for each /, 1 < l < s, we have (A/3)(1 ?x(l)) > A, 
and we deduce from (3.23) that 

s A s A ~~~~~~~2s -(2s - l)M 
EC a(jl+x(l))) + a(l-x(1)) >2s-2sq1=C+ 4 

and consequently that 

(3.25) JNe,p,L(X) - 1? (2(L)) ' x e [-1 -+ , 1 - 61S. 
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Next, suppose that x ? [-1 - 3, 1 + 3 ]s. Then among the 2s numbers 
a((A/3)(l + x('))) and a((A/3)(1 - x('))), 1 < / < s, at least one is less 
than , while the rest do not exceed M. So, for x 6 [-1 -3, 1 +3]s , we 
have 

1= (31 ?+2sl)A 2s -(2s - l)M (Ig (1 +x()) +1:a -~( (-x(O)) < i1+(2s-1)M =C- (4 ) 

and consequently, 

(3.26) INc,P,L(X)I < (2j2L)s) , 
x + [-1 -3, 1 +]S. 

If E := [-1 - 3, 1 + 3]S\[-1 + 3, 1 - 3]s , then (3.25) and (3.26) imply that 

(3.27) IIXQ - N ,p,L|P QL\E< P/2 

Also, since )(E) < 22s+ls and IXQ(x) - Ne,L(x)l < (M + 1) for all x e Rs, 
we have, from (3.22), that 

(3.28) IIXQ - N-,p,LIIP E < eP/2. 

Now, the estimate (3.21) follows from (3.27) and (3.28). 
Next, we write Z:= {0,... , n - 1}. Given f e LP(Q),we set 

(3.29a) am,n := ns f(t)d(t), m E Zsn, 
Rm,n 

and 

(3.29b) Sn(f, x):= E am,nXR. n(X) = am,nXQ(2nf(x-Cm,n)), 
mEZsn mEZsn 

where the vectors Cm, n are defined by 

*) ~~2m(i) + 1 
(3.30) C -(jn 1+ 2=+ 1 Cm, ~~ 2n 

It is then easy to verify that 

(3.3 1 ) jjf- Sn(f, > *)IIlp,Rnl - < 0 (LP(Sm,nn) Sm, n; f , n) m e z.S 

If f = 0 almost everywhere on Q, then we set Gn(f, x) = 0, and (2.7) is 
trivial. Therefore, let us only consider the case Ilf IIP, Q $ 0. With 

Ct)J(LP (Sm, n ) Sm,n; f, 2n) 

mEZsn nsllf n IIPQ 

we define 

(3.32) Gn(f x):= E am,nNe,p,4n(2n(x-Cm,n)) 
mE Zs 

By using (3.21) and (3.31), only an easy computation is needed to verify 
(2.7). E 
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4. IMPLEMENTATION OF SPLINE WAVELETS 

In this section, we consider the approximation of a spline function of higher 
order using a neural network with a sigmoidal function of higher order as its 
activation function. This will be applied to an implementation of the compactly 
supported spline-wavelets introduced by Chui and Wang [7]. 

We start by recalling the definition of the (cardinal) B-splines in the univari- 
ate case. Let N1 := X[o, 1] . Then the (cardinal) B-spline of order m is defined 
inductively by the formula 

j1 

(4.1) Nm(x) Nm-l(X-t)dt, m=2, 3. 

Some of the well-known properties of B-splines are as follows (cf. [19]). The B- 
spline Nm is an (m - 2)-times continuously differentiable nonnegative function 
which is identically equal to 0 outside of the interval [0, m]. On each of the 
subintervals [k, k + 1 ], 0 < k < m - 1, Nm is a polynomial of degree at most 
m - 1. At any point x E R\Z, there are exactly m - 1 integers k such that 
Nm(x - k) :$ 0. The sum of all these functions which are nonzero at x is 1. 
Thus, the B-splines provide a very useful tool for localized approximation. 

In the multivariate setting, the simplest analogue of the B-spline is the tensor- 
product B-spline. For each integer m > 1 and x - (x(l), ..., x(s)) E Rs, this 
is defined by the formula 

S 

(4.2) Ns (x) 17 Nm((x(A). 
j=1 

In this section, we demonstrate that a tensor-product B-spline Ns can be 
approximated arbitrarily closely using a neural network whose activation func- 
tion is a sigmoidal function of order k > 2 (cf. [16]), the size of the network 
depending only on k and m, and not on the degree of accuracy. 

Definition 4.1. Let a: R -- R be a continuous function and k > 0 be an 
integer. We say that a is a sigmoidal function of order k if each of the 
following conditions is satisfied: 

(4.3a) lim a(x) = lim a(x) - 1 
x_+0-oo Xk ' x+oo x - 

(4.3b) l(x)l < K(l + IXI)k, X E R, 

where K > 1 is a constant. 

In [16], a sigmoidal function of order k is used to obtain specific networks 
for approximating an arbitrary continuous function. In the univariate case, the 
rates obtained in [16] are optimal and the approximation is local. In [1 5], a 
multilayered network was constructed to give a localized approximation with 
optimal rates using such functions. The following theorem is an extension of 
the ideas in [15]. 

Theorem 4.2. Let e > 0 and m > 0, k > 2 be integers. We let 

p := [log(ms - s)/ log kl 
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(i.e., the smallest integer such that ms - s < kP) and define 

(4.4) M:= 2spms(k + 1) kP +s 

Then there exists a neural network N(x) := N(k, m, E; X) E rlM,p,s,a such 
that 

(4.5) IN. (x) - N(x)l < e, x e [O, 1]5-s 

By Theorem 4.2, we may translate many theorems in spline approximation 
to the corresponding theorems in approximation using neural networks. Some 
applications are already given in [15]. Here, we illustrate the use of Theorem 4.2 
in the implementation of the compactly supported spline wavelets. We observe 
that the notation which we use in the sequel is different from that used in [7]. 
In order to discuss these, we denote the (univariate) B-spline Nm by (Do and 
write 

(4.6) ko;k,jA:= o(2kXIj), k, jeZ, 

and for each k E Z, 

(4.7) Vk:=span{qo;kj, j E Z}, 

where span A denotes the closed (in L2(R)) linear span of A. Then { Vk: k E 
Z} defines a multiresolution analysis of L2(R) in the sense that 

(i) Vkc Vk+l, kEZ, 

(ii) ClOSL2(UkEZ Vk) = L2(R), 
(iii) nkEz Vk = {0}, and 
(iv) for each k E Z, {0o;k X j j E Z} is an unconditional basis for Vk . 

We define the wavelet space Wk to be the orthogonal complement of Vk in 
Vk+1. It is shown in [7] that the space Wk can also be written as the linear 
span of the translates of a function (DI, similar to (4.7), as follows: Let 

3m-2 

(D (x):= E qjNm(2x-j), 
j=0 

where 

qj =(2m-l (I N2mU - + ), 0j=O,...,3m-2, 
1=0 

and define the wavelets at level k by 

(4.8) Xl; k, j(X) := ??1 (2kX -j . 

Then 

(4.9) Wk=span{ 1kj: j EZ}, kEZZ 

Among the important properties of these wavelets are the following. The wavelet 
(IO is supported on the interval [0, 2m - 1]. There is a refinement equation 

3m-2 

(4.10) (Dv(x) =E qv,j(Do(2x- j), v-O, 1, xER, 

j=0 
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where 

q0 j := 2`-1(J1 jO m, 

q1,j:=qj, j=0,...,3m-2 

and q,,j := 0 if the subscript j is outside the ranges prescribed above. In the 
reverse direction, there is a decomposition relation 

(4.11) (Do(2x - /) = Z , av; 1-2jDv(X -j), 
V=O JEz 

where the constants ao;j and a1 ;j are determined precisely in [7]. 
In the multivariate setting, the simplest way to generalize the Chui-Wang 

wavelets is again by using tensor products. Thus, we write Z52 {0, 1 }s and 
define the wavelets (resp. scaling functions when p = 0) by 

S 

(4.12) VP (x) =f (p(jF)(x(j)), P E Z, 

j=O 

where p = (p(l), ... , p(S)) and 

(4.13) Os;k,j(X) = Ip(2kX_j), k E Z,j E Zs ,PE Z2. 

The refinement and decomposition equations (4.10) and (4. 1 1) take on the form 

(4.14) ?kp;k,j(X) 2 qp,91qo;k+,2j+l(X) P E Z2, 
0<1<3m-2 

and 

(4.15) ?70Kk+1, (X)= E Eap;L-2jOp;ksj(X) 
PEZs iEZs 

where 
s s 

(4. 16) qp, l=Il qpri ) ' 1( ) ' ap , I :=I ap(j) , 1(j , 
j=1 j=1 

and the symbol 0 < 1 < 3m -2 means that all components of 1 are between 0 
and 3m - 2. 

In order to implement the wavelets IP using a neural network, we observe 
that at any level k > 0 only the scaling functions {qOs; k+I,j}m_jI<j<2k+i are 

nonzero on [O, 1 ]s. We approximate these, using Theorem 4.2, by q$0,; k+1 ,j 
and then define Os.,k for p E Z2\{O} using (4.14) to yield the networks 

Op,;k,j. The functions Ok0sk are then defined in two different ways. The- 
orem 4.2 ensures that the difference between these two implementations can 
be made arbitrarily small using only a fixed number of neurons, independent of 
the accuracy desired. Therefore, given a wavelet expansion of a function, we 
may use the networks so constructed to directly synthesize the function within 
essentially the same margin of accuracy as the expansion itself. The total num- 
ber of neurons required in the process is proportional to the necessary number 
of wavelets. Similarly, we observe that only finitely many terms in (4.15) are 
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nonzero if x E [0, 1]s. Therefore, the networks qp,,;k , can be used to con- 
struct bOsk+ 1 to any degree of accuracy. Again, the total number of neurons 
required in this decomposition is proportional to the number of wavelets which 
enter into the expansion. 

We now turn to the proof of Theorem 4.2. 

Proof of Theorem 4.2. This proof proceeds in several steps. 
Step I. Given an integer p > 1 , we construct a network P(A, p, e; x) E 

np, 11 a with the property that 

(4.17) Ixk -P(A, p, e; x)l <I , Ixl < A. 

This is done in [15]; we merely sketch the proof. Let3 := (e/2k+IK)/lk. Find 
B > 0 such that 

|jf(X)j < ,6jXjk, X < -B, |f(X) - Xkl < 6jXjk, X > B. 

Also, set 

(4.18) P(1, 1, e; x) := (J/B)ko(Bx!J). 

It is easy to verify (cf. [15]) that (4.17) is satisfied with A = 1 and p = 1. If 
we set 

(4.19) P(A, 1, e; x) := AkP(1, 1, A-ke; x/A), 

then it is clear that (4.17) is satisfied with p = 1. Since a is uniformly contin- 
uous on any compact interval, we may find ?I > 0 such that 

IP(1 , 1, e/2; x) - P(1, 1, e/2; y)l < e/2, Ix - yl < ?1, Ixl, IYI < 2. 

We define P( 1, 1, e; x) inductively as follows: 

(4.20) P(1 , 1, C; x) := P(1, 1, e/2; P(1, 1- 1, ?1; x)), 1 > 2. 

It is shown in [15] that P(1 , p, e; x) satisfies (4.17) with A = 1. We now 
define 

(4.21) P(A,p,c; x) :=AkPp(l ,p, A-kPe; x/A). 

Step II. We define 

(4.22) Pi(A, p, e; x) := P(A, p, e /2; x) + (_I)kP P(A, p, e/2; -x) . 

The network so defined has 2p neurons arranged in p layers and satisfies 

(4.23) IxkP _P(A, p, e; x)l <?, lxi ? A. 

Step III. We construct a network Q(A, e; x) E rk+I, 1, 1, a such that 

(4.24) Ix+-Q(A, e; x)I? <, ixi < A. 

We obtain numbers a., 0 < ,u < k, which solve the system of equations 
kc 1 

a,U 
k-v= - 'J,1, v=0, 1...I k. 

#=o 

Then it is readily verified that 
k 

(4.25) Ea u(X + ,U)k =x, x E R. 
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Let 

N>max 2(2k)k E laul k 

In view of (4.25), if x > 0 or x < -k/N, then 

Za, Nk-l (x+ )k=k a (Nx+,)k =Nx+/N=x+. 
=oN + NEo 

If -k/N < x < O,then the above choice of N implies that 

k k(+uN~~ (2k)kE aI E aN-k-i (x + ul/N)k < ( ) | < e/2 . 

Thus, we have 

kk 

(4.26) ZauiNkI(x + -) x+ < ?/2, x E R. 

We now let :=t e(2Nk-l E jaj)-1 and define 

k 

(4.27) Q(A, 8; x) := , Nk- lajuP(A + 1, 1, tl; X + #IN) . 
ju=o 

From (4.26) and (4.17), it is easy to see that (4.24) is satisfied. 
Step IV. We construct a network 

R(A, m, e; x) = RS,k(A, m, 9; x) E HM,p+l,s,a 

such that 

(4.28) Ix'-' - R(A, m, c; x)l <? , max Ix(j)I ? A, 

where, with p = flog(ms - s)/ log kl , we have used the notation 

M:= 2ps(k+ 1)(k+s) 

Following [6], we choose numbers ai and bi and vectors wi E Rs such that 
N 

(4.29) xr-i =Zai(wi x + bi)kP 
i=l 

where N :- (kP+S) With 

L:= S ma jw i j + lbil) :(kP(L +Il)kP lai) 

we define 
N / 

(4.30) R(1,m,c;x):=ZajP L+l,p, w(')Q(1, q;x(j))+bi 
i=l1 < j=l 
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If maxI<j?<s x(JI x < 1, then (4.24) implies that 

? ZQ(1 x(j)) + bi - wIx(j) + bi 

< wIWO1o n ; x(j)) - xj) I < DI. 

We have I w0x+j) + bil < L, and hence, for all sufficiently small il > 0, 

w 0)Q (1 , n; x (j) ) + bi < L + 1. 

Therefore, 

(4.31) (z w(0)Q(l, ; x(j)) + bi) - (Zw x ) + bj) 

< kP(L + 1)kP-lL?l. 

In view of (4.23), we obtain, for 1 < i < N, 

P (L + I,P, P7; Zw(j)Q(l, 7; x(j)) + bi 

(4.32) kP 

whn =.Foteg l- 

( w Q(1,; 
x(j)) + 

bi)k 

| < Q. 

The estimate (4.28) follows from (4.29), (4.30), (4.31), and (4.32) in the case 
when A = 1I. For the general A, we define 

(4.33) R(A, m, e; x):= ArsR( 1, m, A-ms+sg; x/A). 

Step V. The quantity Nsm(x) can be written as a linear combination of ms 
quantities of the form (x - j4)m-l . Hence, Theorem 4.2 follows from Step IV 
above. 0 
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